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a b s t r a c t 

This paper deals with a portfolio selection problem with transaction costs and two levels of decision- 

making. It is assumed that the decision making structure is twofold: there is a broker-dealer that controls 

the fees to be charged on the different securities in order to maximize his benefit and there is an investor 

who chooses his portfolio trying to minimize risk while ensuring a minimum level of return. This struc- 

ture gives rise to an implicit hierarchical competition that consists in anticipating the rational decision 

of the other agent in order to optimize the decision-makers’ own criteria. We analyze different situa- 

tions depending on who is first in the hierarchy: the broker-dealer or the investor. We present different 

nonlinear and nonconvex mathematical programming models for the different situations and develop an 

extensive computational study in which we discuss the ensuing economic insights for the models based 

on Dow Jones index data. 
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. Introduction 

Mathematical optimization problems are pervasive in the fields 

f economics and management science, and the importance of de- 

eloping realistic models to delve into the understanding of com- 

lex economic settings has long been recognized. In particular, 

ilevel optimization models have attracted a lot of attention since 

he pioneering work by von Stackelberg [40] . However, realistic 

odels often result in difficult optimization problems and, thus, 

 compromise is required between realism and solvability of the 

odel. Quite often the analyst is confronted with a nonlinear and 

onconvex optimization problem, in which finding globally optimal 

olutions may be an extremely challenging task. 

One of the contributions of this paper is to illustrate how 

roper modeling skills may allow to efficiently solve complex op- 

imization problems, enabling the development of qualitative and 

uantitative economic analysis in problems that, otherwise, would 

e hard to tackle. In order to do so, we formally study two novel
� Area: Optimization; Health Care Systems and Applications. This manuscript was 

rocessed by Associate Editor Jay Rosenberger. 
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305-0483/© 2020 Elsevier Ltd. All rights reserved. 
ilevel portfolio design problems and show how one can rely on 

ell-established approaches to reformulate them as single-level 

roblems that can be fully solved with state-of-the-art optimiza- 

ion software. 

Historically, the main criterion to design an optimal portfo- 

io was to find the configuration of assets that generated the 

ighest expected return. However, this perspective changed in 

952, when Harry Markowitz introduced a new variable along 

ith the expected return: the risk of each portfolio [28] . There- 

fter, analysts began to incorporate a risk-return trade-off in their 

odels. 

The model proposed by Markowitz only focuses on finding an 

ptimal portfolio from the investor’s point of view. The literature 

s plenty of papers with similar approaches, as for instance [6,7,12–

4,20,26,31,32] , to mention a few. However, real markets are gen- 

rally more complex, since there is another decision-maker who 

an set fees on the transactions of the securities to profit from 

nticipating the rational behavior of investors. Transaction costs, 

hose incurred by the investors when buying and selling assets 

n financial markets, have been widely studied in papers such as 

3,4,18,26,43,45] , among others. In this work we study these situ- 

tions in which the investor, when deciding his optimal portfolio, 

as to consider the transaction fee to pay to an agent: the broker- 

ealer, hereafter, the broker. The broker makes decisions regard- 

https://doi.org/10.1016/j.omega.2020.102353
http://www.ScienceDirect.com
http://www.elsevier.com/locate/omega
http://crossmark.crossref.org/dialog/?doi=10.1016/j.omega.2020.102353&domain=pdf
mailto:julio.gonzalez@usc.es
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3 In this context, by a polynomial optimization problem we refer to optimization 
ng fees associated to the assets, trying to maximize the resulting 

rofit. 1 

One of the main contributions of this paper is methodological: 

ntroducing a single-period hierarchical portfolio problem, with 

ontinuous choices, that accounts for decisions on transaction fees. 

he broker fixes these fees while the investor chooses his portfolio. 

he timing of these two decisions is crucial and bilevel optimiza- 

ion is necessary to understand the impact of different hierarchical 

tructures. We discuss different models representing this situation, 

hich arise depending on the order in which choices are made. 

he main model, and arguably the most realistic one, is the B-L 

odel (Broker as Leader) in which, first, transaction fees are deter- 

ined by the broker and then, after observing them, the investor 

hooses his portfolio. Two additional models are considered and 

an be seen as instrumental benchmarks to gain understanding 

n the B-L model: (i) the I-L model (Investor as Leader) in which 

he broker chooses the transaction fees after observing the portfo- 

io chosen by the investor and (ii) the SW model, a simultaneous - 

hoice model in which the goal is to maximize social welfare. 

Importantly, regarding broker’s fees, we allow for quite general 

arket structures. The usual functioning of these markets, where 

he broker selects a fee, common to all assets, to be charged on 

op of the fees fixed by the stock market, is just a particular case. 

he extra generality enables the study of natural departures from 

his baseline setting and the analysis of the impact of the novel 

trategic aspects they may introduce. For instance, in our analysis 

e let the broker associate different f ees to different assets, giving 

im extra freedom to tailor the fees to the attractiveness of the dif- 

erent assets. These models and the associated solution techniques 

ay be seen as a first building block in the evaluation of this new

ompetitive situation. An important challenge for future research is 

o enhance the models so that they can help to understand the ef- 

ects on long-term dynamics of the ensuing competition between 

ifferent brokers. 

In Markowitz’s seminal paper, the risk measure under consid- 

ration was the variance, which, despite being a sound measure of 

ispersion, is nowadays known to have important drawbacks as a 

isk measure. Since then, many different risk measures have been 

ntroduced and analyzed, such as Gini’s Mean Difference [9] , Mean 

bsolute Deviation [21] , Value at Risk [41] , and Conditional Value 

t Risk [35] , to name a few. At the same time, a theoretical body

round risk measures was developed and the notion of coherency , 

ntroduced in Artzner et al. [1,2] , was identified as a natural re- 

uirement. A coherent risk measure must satisfy the properties of 

onotonicity, sub-additivity, homogeneity, and translational invari- 

nce. 2 

Coherency is one of the main reasons to have developed our 

nalysis for the Conditional Value at Risk (CVaR), also known as 

xpected Shortfall, which is the weighted average of the extreme 

osses in the tail of the distribution of the returns. The other main 

eason is that CVaR falls into the set of risk measures whose op- 

imization can be formulated as a linear optimization problem, as 

hown in [35] . Reviews of other LP solvable risk measures can be 

ound in Mansini et al. [25,26] . 

A first approach to the type of bilevel models dealt with in 

his paper can be seen in Leal et al. [24] . Nevertheless, there are a

umber of differences with respect to our approach, the main one 

eing that transaction fees are assumed to be chosen from a dis- 

rete set in Leal et al. [24] , and solution approaches revolve around 

ixed Integer Linear Programming reformulations and Bender’s 
1 This pricing aspect has been modeled as a bilevel problem in the literature in 

any different applications. See, for instance, Grimm et al. [17] , Labbé and Vio- 

in [22] , Maravillo et al. [27] , Qiu et al. [33] , Shioda et al. [39] and the references 

herein. 
2 Refer to [34] for a recent review on the topic. 
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2 
ecomposition techniques [8] . Our analysis allows for continuous 

ransaction fees and, hence, the resulting optimization problems 

re of a completely different nature: nonlinear and nonconvex 

olynomial optimization problems. 3 From the computational point 

f view, finding the global optimum of these problems is known 

o be an NP-hard problem. 4 However, moderate size problems can 

e handled by state-of-the-art optimization techniques and solvers. 

ur computational analysis builds on two such solvers: BARON 

37] and RAPOSa [16] . In addition, we have also addressed the 

ssue of scalability of our solution techniques as compared with 

ther solution methods for larger size instances. To this end, we 

ave studied solution techniques built in different local solvers: 

popt [44] , Knitro [11] and MINOS [29] . The comparative analysis 

f the quality of solutions found and of the running times is re- 

orted in Appendix A . Another important difference with respect 

o [24] is that we also model, and numerically study, situations in 

hich there are multiple followers in the bilevel problems, which 

eads to richer economic interactions and potential for additional 

conomic insights. One of the main findings in the numerical anal- 

sis is that the outcomes of the B-L model Pareto dominate those 

f the I-L model and, further, B-L outcomes are Pareto efficient. 5 . 

The organization of this paper is as follows. First, in 

ection 2 we describe the baseline individual optimization prob- 

ems for the investor and the broker. Second, in Section 3 we 

resent the joint optimization problems: the two hierarchical 

tackelberg models and the simultaneous -choice model; further, 

he solution techniques for these models are also developed. Then, 

n Section 4 we present a case study based on data from the Dow 

ones Index and provide some economic insights. 

. Baseline models for broker-investor interactions 

The portfolio optimization problem considered in this paper is 

ased on a single-period model of investment and incorporates a 

ricing aspect on the transaction costs. Borrowing from [24] , we 

ssume the existence of two types of decision-makers: investors 

nd brokers, with a hierarchical decision structure. 

The investor faces the classic problem of allocating his capi- 

al among various financial securities, each of which will generate 

ome uncertain returns whose random distribution is assumed to 

e known by the investor. Building upon the mean-variance ap- 

roach initiated in Markowitz [28] , we assume that the goal of the 

nvestor is to minimize his risk subject to achieving a given ex- 

ected return. On the other hand, the broker must determine the 

ransaction costs associated with the different securities, with the 

oal of maximizing his profit. Thus, the decision variables of the 

nvestor are the proportions of his capital to invest in each secu- 

ity and those of the broker are the fees on the different securities. 

hese decisions determine the amount paid by the investor to the 

roker and the risk and expected return of the investor. Note that 

he net return for the investor is the result of subtracting, for each 

ecurity, the broker’s fee from the security’s return. 

Formally, the main element of all our models is the set of se- 

urities S. The rate of return of each security j ∈ S is uncertain and 

e model it through a random variable R j . Following the standard 

pproach in the field of decision making under uncertainty, we as- 

ume that these random variables take values on a finite set T of 
roblems in which both the objective function and the constraints are given by 

olynomials. Refer, for instance, to [23] . 
4 A class of problems for which no polynomial-time algorithm to find the global 

olution is known. 
5 An outcome is Pareto efficient if no outcome makes one agent better off with- 

ut hurting the other one. An outcome that is not Pareto efficient is Pareto dom- 

nated. Refer to [30] for an English translation of Pareto’s pioneering work in the 

ate eighties. 
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2

cenarios. 6 Given a security j ∈ S and a scenario t ∈ T ,r jt denotes

he realization of the rate of return R j in scenario t . Each scenario 

 ∈ T has associated probability πt and 

∑ 

t∈ T πt = 1 . 

The broker has to choose the transaction costs associated with 

he securities in S, which we call prices and denote by p. Thus, for 

ach j ∈ S, p j ∈ [0 , 1] represents the proportion of the amount in-

ested in security j that must be paid to the broker. It is natural 

o consider that there are some limits on the prices that can be 

hosen by the broker, so we assume that there is a set of feasible

rices P, which, moreover, is taken to be a bounded polyhedron. In 

ctual cases, the associated constraints may be imposed by mar- 

et regulations, by the board of the broker’s company given some 

arket analysis, or by a combination of both. 

The investor has to choose a portfolio x so that, for each j ∈ S,

 j ∈ [0 , 1] represents the weight of security j in the portfolio. We 

ssume that all capital is invested, so 
∑ 

j∈ S x j = 1 ; if needed, a safe

ecurity with zero rate of return and zero price can be added to 

et S to represent the proportion of money that is not invested. 

ach portfolio x defines a random variable R x = 

∑ 

j∈ S R j x j that rep- 

esents the rate of return of the portfolio. 

In some of the models we discuss we allow for multiple in- 

estors, differing only in their degrees of risk aversion. Importantly, 

hroughout our analysis, although each of these investors may be 

hought of as a single agent, he can also represent a discrete or 

ontinuum set of agents, all of them with the same preferences. At 

ptimality, since all the agents with the same degree of risk aver- 

ion have the same preferences, we can assume that they choose 

he same portfolio and, thus, in our mathematical formulation we 

aggregate” them in a single investor. 

.1. Broker’s problem 

The goal of the broker is to maximize his profit so, given a 

ortfolio x, this can be achieved by solving the linear optimization 

roblem 

ax 
p 

∑ 

j∈ S 
p j x j ( B 

P ) 

s.t. p ∈ P. ( B 

P . a ) 

The main difference between ( B 

P ) and (PricP) in Leal et al. 

24] relies on the continuous character of prices. This leads to a 

otally different family of optimization problems in terms of prop- 

rties and solution techniques: the model in Leal et al. [24] is com- 

inatorial whereas ( B 

P ) is continuous. 

.2. Investor’s problem 

We model the investor’s optimization problem as one in which 

e wants to reduce the risk associated with his portfolio while at- 

aining a certain expected return. As we have already discussed 

n the Introduction, the risk measure under consideration is the 

onditional Value at Risk [35,36] , which is the opposite of the ex- 

ected return on the portfolio when considering only the worst α% 

f cases. The smaller α is the more concerned is the investor with 

he lower tail of the distribution, i.e. , the more risk averse. Given a 

evel α and a discrete random variable Y defined on the set of sce- 

arios T , we denote the corresponding Conditional Value at Risk by 

VaR α(Y ) ; the larger is its value, the riskier is the random vari-

ble Y . 

Given a portfolio x and a price profile p, let Y denote the ran-

om variable that, for each t ∈ T , gives the net rate of return for
6 See, for instance, Chapter 1 in Birge and Louveaux [10] and Chapter 4 in King 

nd Wallace [19] . 

v

o

t

k

3 
he investor: y t = 

∑ 

j∈ S (r jt x j − p j x j ) . Suppose that we have an in-

estor with risk level α and minimum required expected profit 

iven by E min . Then, given p, he wants to solve the following opti-

ization problem: 

in 

x,y 
CVaR α(Y ) ( I P 0 ) 

s.t. y t = 

∑ 

j∈ S 
(r jt x j − p j x j ) , t ∈ T ( I P 0 . a ) 

∑ 

t∈ T 
πt y t ≥ E min ( I P 0 . b ) 

∑ 

j∈ S 
x j = 1 ( I P 0 . c ) 

x j ≥ 0 , j ∈ S. ( I P 0 . d ) 

An important property of CVaR is that its computation is equiv- 

lent to the solution of a linear programming problem. Following 

35,36] , we have that, for α ∈ (0 , 1) , CVaR α(Y ) can be computed

s 

in 

η,d 
−η + 

1 

α

∑ 

t∈ T 
d t πt ( CVaR 

P ) 

s.t. d t ≥ η − y t , t ∈ T ( CVaR 

P 
.a ) 

d t ≥ 0 , t ∈ T . ( CVaR 

P 
.b ) 

The combination of the elements in problems ( I P 0 ) and ( CVaR 

P ) 

eads to the full formulation of the investor’s problem: 

min 

,y,η,d 
−η + 

1 

α

∑ 

t∈ T 
d t πt ( I P ) 

s.t. y t = 

∑ 

j∈ S 
(r jt x j − p j x j ) , t ∈ T ( I P 0 . a ) 

∑ 

t∈ T 
πt y t ≥ E min ( I P 0 . b ) 

∑ 

j∈ S 
x j = 1 ( I P 0 . c ) 

x j ≥ 0 , j ∈ S ( I P 0 . d ) 

d t ≥ η − y t , t ∈ T ( CVaR 

P 
.a ) 

d t ≥ 0 , t ∈ T . ( CVaR 

P 
.b ) 

Observe that ( I P 0 .a ) gives the expected return in each scenario, 

ccounting for the transaction costs and ( I P 0 .b ) ensures the min- 

mum expected return. Constraints ( I P 
0 
.c ) and ( I P 

0 
.d ) define the 

ortfolio. Finally, the objective function and constraints ( CVaR 

P .a ) 

nd ( CVaR 

P .b ) come from the optimization problem to compute 

VaR α(Y ) . Different choices of parameters α and E min allow one 

o model different investor risk profiles. Note that we again have a 

inear optimization problem. 

.3. Dual problems 

Now that we have formally defined both the broker and the in- 

estor problems, the next step is to put them together in a joint 

ptimization problem. We do so in the next section by defining 

wo bilevel problems, depending on who is the leader, the bro- 

er or the investor. These problems are then reformulated as sin- 
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le level problems by relying on strong duality in linear program- 

ing. 7 In order to do so, we need the formulations of the duals of 

roblems ( B 

P ) and ( I P ), which we present below. 

To formulate the broker’s dual problem we can assume, without 

oss of generality, that the polyhedron P can be defined as Ap ≤ b, 

ith these constraints being indexed over the set P cons . Then, the 

ual variables are v s ≥ 0 with s ∈ P cons and the dual constraints are

 

T A − x T = 0 , leading to the dual problem 

in 

v 

∑ 

s ∈ P cons 

b s v s ( B 

D ) 

s.t. v T A − x T = 0 ( B 

D . a ) 

v s ≥ 0 , s ∈ P cons . ( B 

D . b ) 

The formulation of the investor’s dual problem is more in- 

olved. The dual variables are 

• δ, such that δt ∈ R for each t ∈ T , associated with constraints

( I P 0 .a ). 
• μ ≤ 0 , associated with constraint ( I P 

0 
.b ). 

• β ∈ R , associated with constraint ( I P 
0 
.c ). 

• γ , such that γt ≤ 0 for each t ∈ T , associated with constraints 

( CVaR 

P .a ). 

Then, we get the dual problem 

max 
,μ,β,γ

−β − E min μ ( I D ) 

s.t. β + 

∑ 

t∈ T 

(
r jt − p j 

)
δt ≥ 0 , j ∈ S ( I D . a ) 

∑ 

t∈ T 
γt = −1 ( I D . b ) 

γt ≥ −πt 

α
, t ∈ T ( I D . c ) 

γt − δt + πt μ = 0 , t ∈ T ( I D . d ) 

γt ≤ 0 , t ∈ T ( I D . e ) 

μ ≤ 0 . ( I D . f ) 

. Joint optimization models for broker-investor interactions 

In this section we present different models for the interaction 

etween brokers and investors. First, we consider bilevel optimiza- 

ion models in which either (i) we have a leading broker with mul- 

iple investors acting after prices have been set or (ii) we have a 

eading investor with multiple brokers setting prices once the in- 

estment made on each of them has been chosen. Although enrich- 

ng the above models to include multiple leaders might lead to ad- 

itional insights, the resulting optimization problems are substan- 

ially more complex to solve and go beyond the scope of this pa- 

er. On top of the aforementioned bilevel models, we also discuss 

 social welfare maximization problem, in which we look at the 

et of Pareto efficent combinations of prices and portfolios. As we 

lready argued in the Introduction, the model with a leading bro- 

er is the main object of interest in our analysis and the other two 

odels are instrumental for comparison. In particular, the Pareto 

rontier represents a good benchmark to assess the quality of the 

utcomes obtained in the bilevel models. 
7 Refer, for instance, to Chapter 6 in Bazaraa et al. [5] . s

4 
.1. B-L model: one broker-leader, several investors-followers 

This model considers the situation where the broker makes his 

ecision first and then a set M of investors, with possibly differ- 

nt degrees of risk aversion, choose their portfolios. 8 More pre- 

isely, once the leader’s decision p is revealed, each investor i ∈ M

hooses his portfolio x i . Investors may have different risk levels, αi , 

nd minimum expected returns, E i 
min 

. The associated bilevel opti- 

ization problem is 

max 
p, (x i ,y i ,ηi ,d i ) i ∈ M 

∑ 

i ∈ M 

∑ 

j∈ S 
p j x 

i 
j ( B − L − bilevel ) 

s.t. p ∈ P ( B 

P . a ) 

∀ i ∈ M, x i ∈ arg min 

x i ,y i ,ηi ,d i 
−ηi + 

1 

αi 

∑ 

t∈ T 
πt d 

i 
t ( I P ) 

s.t. y i t = 

∑ 

j∈ S 
(r jt x 

i 
j − p j x 

i 
j ) , t ∈ T 

( I P 0 . a ) 

∑ 

t∈ T 
πt y 

i 
t ≥ E i min ( I P 0 . b ) 

∑ 

j∈ S 
x i j = 1 ( I P 0 . c ) 

x i j ≥ 0 , j ∈ S ( I P 0 . d ) 

d i t ≥ ηi − y i t , t ∈ T ( CVaR 

P 
.a ) 

d i t ≥ 0 , t ∈ T . ( CVaR 

P 
.b ) 

The broker’s leading problem has nested followers’ subprob- 

ems in which investors choose their portfolios. Once the prices 

re set by the broker, the followers’ subproblems are continuous 

inear programs. Hence, applying strong duality, we can obtain a 

ingle-level reformulation in which each subproblem is replaced 

y the feasibility constraints of the primal, ( I P ), the feasibility con- 

traints of the dual, ( I D ), and the strong duality constraints, (B-L- 

D) , namely, the equality between the objective functions of ( I P ) 

nd ( I D ): 

max 
p, (x i ,y i ,ηi ,d i ,δi ,μi ,β i ,γ i ) i ∈ M 

∑ 

i ∈ M 

∑ 

j∈ S 
p j x 

i 
j ( B − L ) 

s.t. p ∈ P, ( B 

P . a ) 

y i t = 

∑ 

j∈ S 
(r jt x 

i 
j − p j x 

i 
j ) , t ∈ T , i ∈ M ( I P 0 . a )

∑ 

t∈ T 
πt y 

i 
t ≥ E i min , i ∈ M ( I P 0 . b ) 

∑ 

j∈ S 
x i j = 1 , i ∈ M, ( I P 0 . c ) 

x i j ≥ 0 , j ∈ S, i ∈ M, ( I P 0 . d ) 

d i t ≥ ηi − y i t , t ∈ T , i ∈ M, ( CVaR 

P 
.a ) 

d i t ≥ 0 , t ∈ T , i ∈ M ( CVaR 

P 
.b ) 
8 Recall that each investor type may itself be thought of as a set of investors 

haring the same preferences. 
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β i + 

∑ 

t∈ T 

(
r jt − p j 

)
δi 

t ≥ 0 , j ∈ S, i ∈ M 

( I D . a ) 

∑ 

t∈ T 
γ i 

t = −1 , i ∈ M ( I D . b ) 

γ i 
t ≥ −πt 

αi 
, t ∈ T , i ∈ M ( I D . c ) 

γ i 
t − δi 

t + πt μ
i = 0 , t ∈ T , i ∈ M ( I D . d ) 

γ i 
t ≤ 0 , t ∈ T , i ∈ M ( I D . e ) 

μi ≤ 0 , i ∈ M ( I D . f ) 

ηi − 1 

αi 

∑ 

t∈ T 
πt d 

i 
t = β i + E i min μ

i , i ∈ M. 

(B-L-SD) 

Problem ( B-L ) is a polynomial optimization problem, since there 

re quadratic terms in the formulation. Moreover, some of these 

erms appear in equality constraints such as ( I P 
0 
.a ), which implies 

hat ( B-L ) is a nonconvex optimization problem. Thus, local opti- 

ality does not imply global optimality, and the solution of this 

ind of problems requires the use of specialized global optimiza- 

ion solvers, as we discuss in Section 4.1 . 

.2. I-L model: one investor-leader, several brokers-followers 

This model deals with the less realistic situation in which the 

nvestor makes his decision first and a set K of brokers react op- 

imally to the leader’s decision. More precisely, the investor first 

ecides how much to invest with each broker k ∈ K, x k , so that
 

k ∈ K 
∑ 

j∈ S x k j = 1 and then each broker sets prices. In this case, the 

ilevel model that represents this hierarchical situation is formu- 

ated as follows: 

min 

,d, (x k ,y k ,p k ) k ∈ K 
−η + 

1 

α

∑ 

t∈ T 
πt d t ( I − L − bilevel ) 

s.t. y k t = 

∑ 

j∈ S 
(r jt x 

k 
j − p j x 

k 
j ) , t ∈ T , k ∈ K ( I P 0 . a )

∑ 

k ∈ K 

∑ 

t∈ T 
πt y 

k 
t ≥ E min ( I P 0 . b ) 

∑ 

j∈ S 

∑ 

k ∈ K 
x k j = 1 ( I P 0 . c ) 

x k j ≥ 0 , j ∈ S, k ∈ K ( I P 0 . d ) 

d t ≥ η −
∑ 

k ∈ K 
y k t , t ∈ T ( CVaR 

P 
.a ) 

d t ≥ 0 , t ∈ T ( CVaR 

P 
.b ) 

∀ k ∈ K, p k ∈ arg max 
p k 

∑ 

j∈ S 
p k j x 

k 
j ( B 

P ) 

s.t. p k ∈ P k . ( B 

P . a ) 

This situation is similar to the one discussed for the B-L model. 

e have a bilevel problem such that, once the decisions of the 

nvestor are fixed, the resulting subproblems for the brokers are 

inear. Thus, we can again rely on strong duality to combine the 

easibility constraints of problems ( B 

P ) and ( B 

D ) with the strong 
5 
uality constraints, (I-L-SD) , to transform the bilevel problem into 

n equivalent single level problem: 

min 

,d,y,x 
−η + 

1 

α

∑ 

t∈ T 
πt d t ( I-L ) 

s.t. y k t = 

∑ 

j∈ S 
(r jt x 

k 
j − p j x 

k 
j ) , t ∈ T , k ∈ K ( I P 0 . a )

∑ 

k ∈ K 

∑ 

t∈ T 
πt y 

k 
t ≥ E min ( I P 0 . b ) 

∑ 

j∈ S 

∑ 

k ∈ K 
x k j = 1 ( I P 0 . c ) 

x k j ≥ 0 , j ∈ S, k ∈ K ( I P 0 . d ) 

d t ≥ η −
∑ 

k ∈ K 
y k t , t ∈ T ( CVaR 

P 
.a ) 

d t ≥ 0 , t ∈ T ( CVaR 

P 
.b ) 

p k ∈ P k , k ∈ K ( B 

P . a ) 

(v k ) T A 

k − (x k ) T = 0 , k ∈ K ( B 

D . a ) 

v k s ≥ 0 , s ∈ P k,cons , k ∈ K ( B 

D . b ) 

∑ 

j∈ S 
p k j x 

k 
j = 

∑ 

s ∈ P k,cons 

b k s v k s , k ∈ K. (I-L-SD) 

This optimization problem is again a nonconvex polynomial op- 

imization problem, whose solution requires the use of global op- 

imization solvers. 

.3. SW model: social welfare maximization 

In this section we study the situation in which the broker and 

he investor “cooperate” and try to jointly optimize their respective 

bjective functions. We refer to this situation as the Social Wel- 

are Model, SW. Despite being a less realistic model, it represents 

 good benchmark to get a better understanding of the efficiency 

f the outcomes obtained by the B-L model and facilitate its com- 

arison with the outcomes of the I-L model. As a by-product, the 

odel also serves to quantify the potential benefits of cooperation 

n this setting. Since one of the main goals of this model is to fa-

ilitate a comparison of the outcomes of the bilevel models, we 

ssume that there is only one broker and one investor. 

The classic approach to study this kind of multi-objective prob- 

ems, introduced more than a century ago by Italian economist Vil- 

redo Pareto (refer to [30] for an English translation), consists in 

haracterizing the two dimensional Pareto frontier. Each coordinate 

n this set represents one of the objective functions to optimize 

nd the Pareto efficient points are those feasible pairs (z 1 , z 2 ) such

hat, for any other feasible pair in which one of the agents is bet- 

er off, the other agent is worst off. A standard approach to com- 

ute the Pareto frontier consists in optimizing with respect to one 

f the objective functions while requiring that the other attains a 

inimum level. For each value of the minimum level we obtain a 

areto efficient allocation, whereas the full Pareto frontier is gen- 

rated by varying the minimum level within the range of possible 

alues for the corresponding objective function. Therefore, if we let 
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 0 be a minimum level of the broker’s profit, we are interested in 

he following optimization problem: 

max 
,d,y,x,p 

η − 1 

α

∑ 

t∈ T 
πt d t ( SW B 0 ) 

s.t. 
∑ 

j∈ B 
p j x j ≥ B 0 ( SM PE ) 

y t = 

∑ 

j∈ S 
r jt x j −

∑ 

j∈ S 
p j x j , t ∈ T , ( I P 0 . a ) 

∑ 

t∈ T 
πt y t ≥ E min , ( I P 0 . b ) 

d t ≥ η − y t , t ∈ T , ( CVaR 

P 
.a ) 

d t ≥ 0 , t ∈ T , ( CVaR 

P 
.b ) 

∑ 

j∈ S 
x j = 1 , ( I P 0 . c ) 

x j ≥ 0 , j ∈ S, ( I P 0 . d ) 

p ∈ P. ( B 

P . a ) 

In the above model, the objective function together with con- 

traints ( CVaR 

P .a ) and ( CVaR 

P .b ), correctly define the CVaR of the

eturns y t . Constraint ( B 

P .a ) ensures the feasibility of the prices and

onstraints ( I P 0 .b ), ( I P 0 .c ), and ( I P 0 .d ) ensure that the chosen portfo-

io is feasible and achieves an expected return greater than E min . 

hen, constraints ( I P 
0 
.a ) contain the interaction between prices and 

eturns. Finally, constraint ( SM PE ) ensures the minimum level of 

he broker’s profit and by varying B 0 we can construct the Pareto 

rontier. Note that there is a Pareto frontier for each value of E min . 

Yet again, we are confronted with a nonconvex polynomial op- 

imization problem, whose solution requires the use of global op- 

imization solvers. 
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Fig. 1. Expected return and variance

6 
. Numerical results: case study for the Dow Jones index 

This section is devoted to present the numerical results asso- 

iated to a case study that builds upon real data taken from the 

ow Jones Index and try to hint at potential economic insights that 

ight be worth studying further. In Section 4.1 below we start by 

iscussing how the parameters required by the optimization mod- 

ls presented in Sections 2 and 3 are obtained from the data on 

he Dow Jones Index. Further, we also discuss how the resulting 

nstances of these models have been solved by using state-of-the- 

rt global optimization solvers. 

Once the data and models for the case study are in place, we 

roceed to discuss the results. First, we separately analyze the B-L 

odel in Section 4.2 . Next, we present the results for the I-L model 

nd a comparison of the results for the two models in Section 4.3 .

inally, in Section 4.4 we discuss the results for the SW model, 

long with some concluding comments on the overall analysis. 

It is important to note that we have performed similar analyses 

o the one we present below, but taking alternative financial in- 

ices (such as the Spanish IBEX) and different estimates on future 

ealizations of the returns of their securities. We have found that 

he qualitative results and economic insights that we present be- 

ow for the Dow Jones’ companies also appeared quite consistently 

n all other analyses. 

.1. Instances and solution technique 

There are two main ingredients common to all the models we 

ave discussed: the set of securities in which to invest and the 

et of constraints P, that limits the fees the broker can impose 

n those securities. Regarding the latter, for the case study in this 

ection we assume that the set P is given by the following con- 

traints: 

 

j∈ S 
p i ≤ 0 . 3 

p j ≤ 0 . 1 , j ∈ S 

p j ≥ 0 , j ∈ S. 
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 for the Dow Jones securities. 
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The above constraints are just a simple example of the polyhe- 

ral set P, which facilitates the ensuing analysis. There is a maxi- 

um fee that can be imposed on each security and there is also a 

imit on the sum of the fees on the different securities. One nat- 

ral consequence of these constraints is that the broker prefers to 

ace investors which do not diversify much. If the investment is 

ade on three or less securities, then the broker can get a profit 

f 0.1 by putting a fee of 0.1 in all those securities. On the con-

rary, if the investor puts his money in more than three securities, 

hen the broker cannot go for a maximum fee of 0.1 in all of them

nd has to choose on which ones to concentrate. We do not claim 

hat this choice for the set P is particularly realistic, but our ap- 

roach could be readily applied to any other polyhedral set P . 9 As 

e have already argued, in actual cases these constraints may be 

mposed by a regulator, by some board of the company based on 

onsiderations regarding their competitors, or by both of them. 

Regarding the set of securities, we consider those associated 

ith the 30 companies of the Dow Jones Index: AAPL, AXP, BA, 

AT, CSCO, CVX, DIS, DWDP, GS, HD, IBM, INTC, JNJ, JPM, KO, MCD, 

MM, MRK, MSFT, NKE, PFE, PG, TRV, UNH, UTX, V, VZ, WBA, 

MT, and XOM. 10 

For the above securities we have tracked the weekly market re- 

urn during a six-month period, from August 15th, 2018, to March 

7th, 2019. This results in a total of 30 vectors of joint realizations 

or the securities under study. Then, we have taken these past re- 

lizations and assumed them to be equally likely future scenarios. 

e do not claim that these estimates for future realizations repre- 

ent optimal or accurate predictions in any sense. We just consider 

hey represent realistic scenarios (they have appeared in the past) 

hich, for the sake of our analysis, ease the exposition and de- 

iver similar qualitative results to those that would be obtained af- 
9 In particular, the usual market functioning in which the fee has to be common 

o all assets is achieved, for instance, by adding the constraints p i = p 1 for all i � = 1 . 

dding these constraints to the set P in our case study would result in a straight- 

orward decision problem for the broker, in which he would evenly split his “total 

udget”, 0.3, among the different assets. The resulting outcomes would be worse 

or the broker than those obtained in our analysis, where he can associate different 

ees to the different assets. 
10 Information on the associated companies can be checked, for instance, at https: 

/finance.yahoo.com/ . c

7 
er more rigorous scenario estimations based, for instance, on time 

eries techniques. In Fig. 1 we represent the expected value and 

ariance of the R j random variables associated with each of the 30 

ow Jones securities in the 30 scenarios we have considered. 

The mathematical programming problems associated to the 

one level” formulations of the B-L, I-L, and SW models have been 

ormulated in AMPL modeling language [15] . Then, each of the re- 

ulting instances has been solved on a server of ITMATI 11 using 

wo global optimization solvers: BARON [37,42] , a general solver 

or mixed integer nonlinear programming problems, and RAPOSa 

16] , a solver that builds upon the Reformulation Linearization 

echnique [38] and that has been specifically designed for polyno- 

ial programming problems, a class to which all the models dis- 

ussed in this paper belong to. 12 Further, we have analyzed the 

ssue of the scalability of our methodology. In this regard, we have 

ompared the above solution approach with different methodolo- 

ies built in local solvers: Ipopt [44] , Knitro [11] and MINOS [29] .

he results are reported in Appendix A . As expected, global opti- 

ization solvers such as BARON and RAPOSa deliver the best solu- 

ions for small instances but, as problem sizes increase, they find 

t harder to close the optimality gap and global optimality is no 

onger guaranteed. In spite of that, BARON finds in most of the 

ases the best solution. On the other hand, local optimizers are 

uch faster and always deliver solutions without even approach- 

ng the time limit (one hour). With the exception of MINOS, which 

erforms rather poorly, the quality of the solutions obtained by 

hese local solvers is quite acceptable, with Knitro being competi- 

ive with BARON for the largest instances. 

There are a couple of important parameters associated with all 

he models we have presented, so it is important to clarify their 

alues in the analysis: 

Risk profile of the investor. We consider four different risk 

profiles for the investors, 0.05, 0.25, 0.50, and 0.99, with the 

first one being the most risk averse and the last one being 

essentially an expected utility maximizer. 
11 Technological Institute for Industrial Mathematics ( http://www.itmati.com/en ). 
12 The AMPL files associated to the models and data discussed in this case study 

an be downloaded from http://shorturl.at/chv17 . 

https://finance.yahoo.com/
http://www.itmati.com/en
http://shorturl.at/chv17
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Minimum expected return. In all the optimization models 

there is a constraint that sets the minimum expected return, 

E min , that the investor is willing to accept in order to make 

his investment. What we do in our analysis is to solve a set 

of 32 problems associated with different values of E min rang- 

ing from −0 . 1 to 0.72 (the highest expected return of any 

security). 

.2. B-L model 

We start discussing the results assuming that there is only an 

nvestor profile which, as we have argued before, can be thought 

f as a continuum of agents with the same degree of risk aversion. 

ext, we present results for the model in which the population of 

ollowers is composed of investors with different degrees of risk 

version. 

.2.1. B-L model. One follower 

For each risk profile α ∈ { 0 . 05 , 0 . 25 , 0 . 50 , 0 . 99 } , we solve the

ssociated B-L model. In Fig. 2 we present, for each value of α, 

 line representing the objective function CVaR α for each value of 

 min . This figure seems to suggest a counterintuitive result. Namely, 

or all levels of E min , the more risk averse the investor is, the more

isk he must assume in the optimal solution. However, note that 

ach line represents the CVaR α associated with the optimal so- 

ution for that level α, so the degrees of riskiness implied by the 

ifferent lines are not really comparable. For instance, in the line 

ssociated with type α = 0 . 05 we can see that, in order to get an
Fig. 3. Comparison of CVaR levels at the optim

8 
xpected return of 0.2, the investor has to be willing to risk an av- 

rage loss of almost 3 in the tail with the worst 5% realizations 

given his security choices). 

In order to obtain comparable results across risk profiles, in 

ig. 3 we present four subfigures, one for each value of α. For in- 

tance, Fig. 3 (a) contains the CVaR 0 . 05 associated to the optimal 

olutions of the different risk profiles (again, for each level of E min ). 

e now find, as expected, that the line corresponding to each risk 

rofile α is the one minimizing the corresponding CVaR α . Inter- 

stingly, setting aside the 0.99 type, which is usually the one as- 

uming the highest risk according to all other risk profiles (he just 

oes for the security with the highest expected return regardless 

f the value of E min ), there is no clear pattern characterizing how 

he other risk profiles are ranked. For instance, in Fig. 3 (a), the so-

utions for type 0.25 have a higher CVaR 0 . 05 than the solutions for 

ype 0.50 for values of E min below 0.45, but the situation reverses 

fter that point. 

Going back to Fig. 2 , we can also see that, for each given risk

rofile, the CVaR at optimality remains constant for small values 

f E min , the reason being that the associated constraint is not de- 

anding (indeed, not even binding at optimality). Once the thresh- 

ld on the minimum level of expected return starts to matter, we 

ee that the risk associated with the optimal solutions starts to in- 

rease; the risk-return trade-off starts to kick in. Then, once the 

alue of E min gets larger that 0.62 we see that the risk starts de- 

reasing for all risk types, which may be counterintuitive at first. 

his is because, for sufficiently large values of E min , to get a large

nough expected return, the investor has to put all his money in 

he security PG, the one with the highest return, 0.72 (see Fig. 1 ).
al solutions of the different risk profiles. 
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Fig. 4. Broker profit and number of securities at optimality for different risk profiles. 

Fig. 5. CVaR α for the models with one follower and multiple followers. 
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he broker anticipates this investment and puts a fee of 0.1 on se- 

urity PG, resulting in an expected return of 0.62 for the investor. 

eyond that level, in order to let the agent have feasible solutions 

n his “subproblem”, the broker must reduce the fees and, indeed, 

e see in Fig. 4 (a) how the broker’s profit decreases from that 

oint onwards. We can also see in Fig. 4 (a) that for moderate val-

es of E , those at which the associated constraint is already de- 
min 

9 
anding, the profit of the broker tends to be increasing. The rea- 

on for this is that the investor cannot diversify so much in order 

o get the target expected return and becomes more predictable 

or the broker. This can be seen in Fig. 4 (b), where we see that

he number of securities in which the agent invests decreases as 

 min increases (until eventually the investment is concentrated on 

ecurity PG). 
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Fig. 6. Profit of the broker for the models with one follower and multiple followers. 

Fig. 7. CVaR α for each risk profile and each value of E min in the B-L and I-L models. 

10 
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Fig. 8. Relative variances of the optimal portfolios in B-L and I-L models. 
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To conclude the discussion regarding the B-L model with one 

ollower, note that the broker seems to prefer to face investors 

ith “extreme” degrees of risk aversion (0.05 and 0.99 in our anal- 

sis), since these types of investors tend to have less “appealing”

ecurities in which to invest, making them more predictable (see 

ig. 4 ). 

.2.2. B-L model. Multiple followers 

In this section we solve again the B-L model, but now with dif- 

erent investor profiles choosing simultaneously their portfolios at 

he second level, once the broker has fixed the fees on the dif- 

erent securities. We consider three different profiles, with α ∈ 

 0 . 05 , 0 . 50 , 0 . 99 } . The main reason for not including α = 0 . 25 in

he analysis is that the optimization problem with three investors 

n the second level is already quite involved, with the optimiz- 

rs experiencing already some minor numerical difficulties. Most 

nstances required more than one hour to be solved to optimal- 

ty and adding a fourth profile just made time requirements even 

ore demanding and numerical issues more accused. 13 

Since the qualitative results are analogous to those for the 

ase with a single follower, we have moved the associated figures 
13 Indeed, the reader will notice that, in the figures in this section, the lines for 

he model with multiple followers are not as smooth as the ones for the model 

ith a single follower. This is because the precision obtained in the final solutions 

s smaller in the former. 

m

l

b

i

b  

11 
o Appendix B ( Figs. 14–16 ). The interesting part of the analysis 

omes when we compare the results obtained for the two cases: 

ingle follower and multiple followers. 

Intuitively, the situation with investors with different risk pro- 

les acting simultaneously in the second level should be benefi- 

ial for them and reduce the profit of the broker, since investors 

ith different profiles may go for different portfolios and the bro- 

er cannot put a maximal fee of 0.1 in all the involved securities. 

n the model with a single investor, the broker could tailor his fees 

pecifically to each risk profile, and now has to divide his “total 

udget” of 0.3 among them. Accordingly, in Fig. 5 we can see that, 

hen the investors act independently, they must assume higher 

isks (higher CVaR) to ensure a given expected return. Further, this 

ifference disappears when E min is sufficiently large so that all the 

nvestors must essentially go for security PG and then the CVaR 

alues for both models coincide. 

Fig. 6 shows the profit for the broker which, as expected, is 

maller in the multiple follower model. The effect is very clean 

or the investor with risk profile α = 0 . 99 . Since this investor just

ants to go for security P G regardless of the value of E min , in the

ase of a single follower the broker can extract for him his maxi- 

um possible benefit, 0.1. However, in the case with multiple fol- 

owers, the broker cannot extract so much profit from this investor, 

ecause of the trade-off with the fees on the securities of the other 

nvestors. Additionally, we can see that, although the profit of the 

roker tends to increase with the value of E , the profit is not a
min 
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Fig. 9. Profit of the broker in B-L and I-L models. 
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onotone function of it. The reason for this is that, for relatively 

mall values of E min , it is not so clear how the diversification on

he different securities will affect the benefit of the broker (it is 

ot just a matter of the total number of securities in which the in-

estor invests, but also about how evenly the money is split among 

hem). 14 

The above discussion of the B-L model hints at the following in- 

ight: given a market with multiple brokers and multiple investors, 

ven if each of them can choose asset specific fees, as long as 

hese fees cannot be different for different investors, then investors 

re better-off by concentrating all on the same broker, limiting his 

ower to tailor the fees to specific risk profiles. Validating such an 

nsight would require the analysis of a model with multiple lead- 

ng brokers, which goes beyond the scope of this paper. 

.3. I-L model and comparison of B-L and I-L models 

We now move to the setting in which the investor is the leader, 

ith the broker choosing the fees with full knowledge of the in- 

estment made on each security. Arguably, this is a less realistic 

odel which, intuitively, should favor the broker. For the sake of 

xposition, we present the figures that allow to compare the B-L 

nd I-L models. Before proceeding, it is worth discussing a couple 
14 For the sake of completeness, in Fig. 15 (b) in Appendix B we represent the 

umber of securities in which each risk profile invests as a function of E min . s

12 
f “technical” differences between the results obtained for the dif- 

erent models: 

• For the I-L model we do not consider the case of multiple fol- 

lowers. The reason is that, as long as all the brokers face the 

same constraints, there is no additional richness and the in- 

vestor cannot do better than what he would do in the model 

with a single follower. On the other hand, although allowing 

for different feasible sets for the different brokers might lead 

to different results and additional insights, such an analysis is 

beyond the scope of this paper. 
• The value of E min is taken in the interval [ −0 . 1 , 0 . 62] (recall

that in the B-L model the interval was [ −0 . 1 , 0 . 72] ). This dif-

ference is driven by the order in which the investor and the 

broker take their actions. In the I-L model, once the investor 

has chosen his portfolio, the broker will choose fees in order to 

maximize his profit. In particular, in order to get an expected 

value of at least 0.62, the investor has to put all the money in 

security PG (which has an expected return of 0.72), after which 

the broker would associate a 0.1 fee to security PG, leading to 

an expected return of precisely 0.62. The situation in the B- 

L model was different since the broker chooses first and can 

“credibly” let the investor gain more than 0.62 by associating a 

fee smaller than 0.1 to security PG. 

We start the analysis with Fig. 7 , which contains a compari- 

on of the CVaR values obtained for the I-L (gray) and B-L (black) 
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Fig. 10. Pareto frontiers and solutions for B-L and I-L models. 
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odels and shows that, for the investor, both models result in es- 

entially the same objective function. Yet, if we were to zoom in 

nto the different lines, we would observe that the CVaR for the 

-L is often slightly higher than the one for the I-L model (and 

ever lower). Qualitatively this is quite natural, since the broker 

hooses his fees being fully informed of the investor’s portfolio, 

he investor’s objective function gets worse with respect to the 

-L model. Interestingly, although the difference in the CVaR val- 

es is very small, the difference is more noticeable in the asso- 

iated portfolios. In particular, it seems that in the I-L model the 

nvestor tends to diversify more in order to reduce the fees paid 

o the broker (even if it requires to choose a portfolio with slightly 

orse returns). This difference is illustrated in Fig. 8 , where we 

epresent the relative variance of the optimal portfolios. More pre- 

isely, the variance of portfolio x is computed as 
∑ 

j∈ S (x j − 1 / 30) 2 .

n this case, the largest possible variance is achieved when all the 

nvestment is made on the same asset, resulting on a value of 

.0322. 15 On the other hand, the variance would be 0 if all assets 

et investment 1 / 30 , which corresponds with full diversification. 

n Fig. 8 we represent the relative variances of the portfolios, com- 

uted as the variances divided by 0.0322, the maximum variance. 

ince the smaller relative variance, the larger the diversification, 

he figure shows that, indeed, the I-L tends to exhibit more di- 
15 Given a feasible portfolio x ∈ [0 , 1] 30 , the condition 
∑ 

j∈ S x j = 1 implies that the 

verage investment is 1 / 30 . Thus, when the portfolio concentrates on a single asset 

e get a term of the form (1 − 1 / 30) 2 which leads to the highest possible variance. 

g

p

a

P

13 
ersification. Finally, this additional diversification in the I-L model 

hould also result in a decrease of the profit of the broker, which 

e show in Fig. 9 . 

The above discussion and the associated figures show that the 

utcomes of the B-L model Pareto dominate those of the I-L model. 

hus, not only the B-L model seems more realistic, but also seems 

o lead to outcomes that are more efficient from the social point 

f view. 

.4. SW model 

The final discussion in the previous section makes it natural to 

tudy the SW model in order to understand not only how the out- 

omes of the B-L and I-L models relate to each other in terms of 

areto domination, but also how they perform in terms of Pareto 

fficiency. 

Recall that if we fix a value for E min then, varying the value of 

 0 in model ( SW B 0 
), we obtain the Pareto frontier associated with 

inimum return E min . In Fig. 10 we present the Pareto frontiers 

or four different values of E min , evenly distributed among those 

alues in the grid used in the previous sections (0.156, 0.310, 0.464, 

nd 0.617). In this figure we also represent the outcomes obtained 

n the B-L and I-L models for the same values of E min , so we can

et a better understanding of the efficiency of these models. 

As expected, the results in Fig. 10 confirm the findings in the 

revious section. The outcomes of B-L and I-L models are gener- 

lly close to each other but, for some instances, the B-L outcome 

areto dominates the I-L outcome. The clearest cases in Fig. 10 are 
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16 For instance, a value 0.5 for a solver indicates that it obtained an objective func- 

tion worse, by 50%, than the best solution found. 
btained for E min = 0 . 156 and E min = 0 . 464 with α = 0 . 05 . Last, but

ot least, note also that the B-L outcomes always lie in the Pareto 

rontier, whereas the I-L outcomes are sometimes inefficient. Thus, 

ur numerical results show some form of domination of the B- 

 model with respect to the I-L model. An interesting line of re- 

earch, that goes beyond the scope of this paper, would be to ex- 

lore to what extent these numerical results can be backed up 

ith theoretical results, not only for the models discussed in this 

aper but, possibly, with respect to more general versions of them. 

As a conclusion of the discussion in the last two sections on 

he comparison of the B-L model with the I-L and SW models, we 

ant to highlight once again the fact that it is precisely the most 

ealistic model, B-L, the one leading to efficient outcomes. This is 

n a sense reassuring for the way in which these markets currently 

perate. In particular, the results suggest that the I-L model might 

ead to inefficient markets in which investors might choose to “give 

p” some rent in order to be less predictable. 

. Conclusions 

This paper deals with a single-period portfolio selection prob- 

em with transaction cost and two levels of decision-making. On 

he one hand, there is a broker that controls the fee to be charged

o the different securities in order to maximize his benefit and, on 

he other hand, there is an investor that chooses his portfolio try- 

ng to minimize the risk while ensuring a certain expected return. 

his structure gives rise to an implicit competition in order to an- 

icipate the rational decision of the other party so as to optimize 

he decision-makers’ own criteria. We have presented different 

odels depending on the order in which choices are made. This 

roduces three situations: (i) the main one, in which the broker is 

eader and the investor follows with his decision (B-L model), (ii) 

he investor acts first and the broker is the follower (I-L model), 

nd (iii) the social welfare model (SW) in which both parties col- 

aborate to maximize the aggregated objective functions. We have 

eveloped mathematical programming formulations to model the 

hree of them. As opposed to the models in Leal et al. [24] , we

ave assumed continuous sets of possible transaction costs, which 

eads to nonlinear and nonconvex optimization problems. The first 

wo are bilevel programs that can be reformulated into single level 

olynomial optimization problems and the third model also be- 

ongs to this class. We solved them using two global optimization 

olvers: BARON and RAPOSa. To illustrate the economic insights 

hat can be gained with these models, we have developed a case 

tudy based on data from the Dow Jones index with weekly mar- 

et returns during a six months period from August 15th, 2018, to 

arch 17th, 2019. These results report a comparison among the 

odels from different angles. One of the most interesting findings 

f our analysis is that there seems to be some form of domination 

f the B-L model over the I-L model with respect to the broker- 

ealer profit and the CVaR risk obtained by the two decision- 

akers, with the B-L model delivering Pareto efficient outcomes. 

his paper opens up some lines for future research such as the ex- 

ensions to multiple leader-follower models, the consideration of 

ultiple period situations, and the study of whether or not some 

f the economic insights from the case study can lead to theoret- 

cal results, not only for the models discussed in this paper, but 

lso to some of their extensions mentioned above. 
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ppendix A. Comparison of different solution methods 

This appendix is devoted to compare different solution meth- 

ds applied to the problems in this paper. Additionally, we have 

lso addressed the issue of scalability of our solution technique as 

ompared with other solution methods for larger size instances. To 

his end, we have studied solution techniques built in different lo- 

al solvers: Ipopt [44] , Knitro [11] and MINOS [29] . The compara- 

ive analysis of the quality of solutions found and of the running 

imes is shown in Figs. 11–13 . 

Fig. 11 compares four solution methods built in different solvers 

three of them local Ipopt, Knitro and MINOS and one global 

ARON) over our benchmark problem B-L with one investor and 

ifferent risk profiles ( α ∈ { 0 . 05 , 0 . 25 , 0 . 50 , 0 . 99 } ). After the name

f each solver we show the number of problems, out of 32, in 

hich the corresponding solver found the best solution. On the x - 

xis we represent the different instances (as the minimum level 

f expected return varies). On the y -axis we represent the rela- 

ive difference in the quality of the solution of each solver com- 

ared to the best solver. 16 To provide additional information on the 

uality of the solutions, we also represent the final optimality gap 

btained by BARON. The performance of the different methods is 

uite similar and most of them find optimal or near optimal solu- 

ions within the time limit. Despite the good performance of all 

olvers, BARON is the only one finding the best solution for all 

roblems. Indeed, given the reported gaps, we know that BARON 

ound the global optimum for these problems. Note that MINOS is 

he solver with the worst performance. 

Fig. 12 analyzes the issue of scalability of solutions methods for 

arger problems. We report results for problems with 3 to 20 in- 

estor profiles. Again, after the name of each solver we show the 

umber of problems, out of 32, in which the corresponding solver 

ound the best solution. Increasing the number of investors aug- 

ents the complexity of these problems. As it can be seen in the 

raphs, our original solution method (based on the global solver 

ARON) is quite robust and in almost all cases it provides the best 

esults in terms of gap with respect to the best solution found. 

et, we can see how, as problem sizes increase, BARON finds it 

ore difficult to close the optimality gap and, indeed, for the larger 

nstances Knitro’s results are competitive with those obtained by 

ARON. 

Finally, for the more difficult problem with 20 investor profiles, 

e report the running time required for the different methods un- 

il they stop with a possibly local optimal solution (local solvers 

eport solution without guaranteed global optimality). The three 

https://doi.org/10.13039/501100006280
https://doi.org/10.13039/501100006280
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Fig. 11. Comparison between solvers in BoT model with one investor and different risk profiles. 

Fig. 12. Comparison between solvers in BoT model when the number of investors increases. 

15 
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Fig. 13. Running time in BoT model with 20 investors. 
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t

p

o

A

m

S

ocal solvers always report a solution quickly (in all cases less than 

00 s) whereas BARON always took one hour trying to certify op- 

imality. Comparing the local solvers the most efficient for these 

roblems seems to be again Knitro, which is the fastest with only 

ne exception. 
Fig. 14. Comparison of CVaR α levels at the opti

16 
ppendix B. Additional graphs 

In this section we present the Figures associated with the B-L 

odel with multiple followers. These parallel those discussed in 

ection 4.2.1 for the case with one follower. 
mal solutions of the different risk profiles. 
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Fig. 15. Broker profit and number of securities at optimality for different risk profiles. 

Fig. 16. Comparison of the number of securities as a function of E min . 

a  

e  

s

s

r

R

 

 

In Fig. 14 we show the objective function of each risk profile as 

 function of the value of E min and also the CVaR α at the differ-

nt optimal solutions for each α ∈ { 0 . 05 , 0 . 50 , 0 . 99 } . In Fig. 15 we

how the broker-dealer profit and also the number of number of 

ecurities chosen at optimality for the different risk profiles. 

In Fig. 16 we represent the number of securities in which each 

isk profile invests as a function of E . 
min 
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